Quasi-ohmic single molecule charge transport through highly conjugated meso-to-meso ethyne-bridged porphyrin wires.

نویسندگان

  • Zhihai Li
  • Tae-Hong Park
  • Jeff Rawson
  • Michael J Therien
  • Eric Borguet
چکیده

Understanding and controlling electron transport through functional molecules are of primary importance to the development of molecular scale devices. In this work, the single molecule resistances of meso-to-meso ethyne-bridged (porphinato)zinc(II) structures (PZn(n) compounds), connected to gold electrodes via (4'-thiophenyl)ethynyl termini, are determined using scanning tunneling microscopy-based break junction methods. These experiments show that each α,ω-di[(4'-thiophenyl)ethynyl]-terminated PZn(n) compound (dithiol-PZn(n)) manifests a dual molecular conductance. In both the high and low conductance regimes, the measured resistance across these metal-dithiol-PZn(n)-metal junctions increases in a near linear fashion with molecule length. These results signal that meso-to-meso ethyne-bridged porphyrin wires afford the lowest β value (β = 0.034 Å(-1)) yet determined for thiol-terminated single molecules that manifest a quasi-ohmic resistance dependence across metal-dithiol-PZn(n)-metal junctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Ohmic Single Molecule Charge Transport through Highly Conjugated <italic>meso</italic>-to-<italic>meso</italic> Ethyne-Bridged Porphyrin Wires

Understanding and controlling electron transport through functional molecules are of primary importance to the development of molecular scale devices. In this work, the single molecule resistances of meso-to-meso ethyne-bridged (porphinato)zinc(II) structures (PZnn compounds), connected to gold electrodes via (4′-thiophenyl)ethynyl termini, are determined using scanning tunneling microscopy-bas...

متن کامل

On the Influence of the Bridge on Triplet State Delocalization in Linear Porphyrin Oligomers

The extent of triplet state delocalization is investigated in rigid linear zinc porphyrin oligomers as a function of interporphyrin bonding characteristics, specifically in meso-meso singly linked and β,meso,β fused structures, using electron paramagnetic resonance techniques. The results are compared with those of earlier measurements on porphyrin oligomers with alkyne linkers exhibiting diffe...

متن کامل

Porphyrin dimers bridged by an electrochemically switchable unit.

In the past decade much effort has been devoted to the synthesis and studies of molecular systems comprising porphyrin units bridged by well-defined p-conjugated spacers at the mesoor b-positions. These conjugated oligoporphyrin systems are expected to have potential applications in molecular wires and electronic devices due to their unique optical, physical, and chemical properties. Photophysi...

متن کامل

High-efficiency switching effect in porphyrin-ethyne-benzene conjugates.

We have explored the electronic transport properties of porphyrin-ethyne-benzene conjugates using an ab initio method. The results indicate that these ethyne-bridged phenyl porphyrin molecules can be used as candidates for molecular switching devices. The coplanar conformation of phenyl and porphyrin moieties allows a far larger current than the perpendicular conformation due to the near vanish...

متن کامل

Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths.

We report the synthesis of a series of hydrophilic butadiyne-linked conjugated zinc porphyrin dimers, designed as photodynamic therapy (PDT) agents. These porphyrin dimers exhibit exceptionally high two-photon absorption cross sections (delta(max) approximately 8,000-17,000 GM) and red-shifted linear absorption spectra (lambda(max) approximately 700-800 nm) making them ideal candidates for one-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2012